扫码添加微信,获取更多半导体相关资料本文利用流电位技术测量了不同清洗过程下低压和等离子体增强化学气相沉积氮化硅晶片的电动学特性,一个用于处理5in的流媒体电势单元,设计和制造晶圆是为了进行这些测量,氮化硅的等电点(IEP)取决于清洗方法和沉积技术,用x射线光电子光谱测量了薄膜的Si/O和Si/N比,以解释测量到的IEP值的差异,研究了聚苯乙烯乳胶颗粒从水溶液沉积到氮化硅晶片上,并与电动势数据的相关性。晶圆是专门为zeta电位测量而设计和构造的,是由两个超高分子量聚乙烯(UHMWPE)块构建的,每个块都有一个精确的切割凹陷,取5英寸,封信条用直径为14.7cm、厚度为0.076cm的聚四氟乙烯(PTFE)垫片分离氮化硅晶片,在垫片的中心切割一个0.814.2厘米的区域,形成一个液体流动通道,顶部块有合适的液体入口和电极放置,如图所示1,两个铂铂电极位于电池的顶部,以测量流电位,铂电极用掺杂0.005%(w/v)氯铂酸溶液定期铂化,以减少极化产生的不对称电位。 图1本研究采用以铝阳极(K~1.2=1486.6eV)为x射线源的VGscalabMKII光电子能谱仪进行XPS分析,用PerkinElmer1800傅里叶变换红外光谱仪在800~4000厘米-z区域获得了氮化物晶片的傅里叶变换红外(FTIR)光谱,在测量过程中,用氮气净化样品室,以减少含水量。20次分辨率为4cm-1...
发布时间:
2022
-
01
-
06
浏览次数:17
扫码添加微信,获取更多半导体相关资料在本文章中,研究了球形试样的尺寸参数,以确定哪种尺寸允许可靠地测量各向异性蚀刻中的方向依赖性,然后进行了一系列的实验,测量了所有方向的蚀刻速率。这导致建立了一个涵盖广泛的氢氧化钾蚀刻条件范围的蚀刻速率数据库,得到的数据库澄清了取向依赖性随氢氧化钾浓度和蚀刻温度的变化而变化很大,最后,我们分析了不同氢氧化钾浓度下的蚀刻谱,蚀刻轮廓因方向依赖性的变化而变化。使用了一个单晶硅的半球形样品,如图所示1,被机械地磨碎,拍打,并抛光成一个镜像表面,脑半球的半径为22mm,球形度不到晚上10点,大脑半球的顶部朝向,朝向平面朝向外围,所有的晶体取向都出现在半球形表面。测量蚀刻前后的轮廓并记录变化,可以在任何方向计算蚀刻速率。 图1当蚀刻进行时,试样表面呈现多边形轮廓,考虑了相邻方向之间的干扰问题,这个问题如图所示2,根据他们自己的蚀刻率,当平面B到达点C之前时,指向A方向的蚀刻前方消失。在这种情况下,无法正确评估方向a中的蚀刻率,我们研究了试样的尺寸参数,以找到那些可以正确评估蚀刻率,而不让理想的方向从半球表面消失,结论是,在晶体学取向方面,评估所需的密集数据网的蚀刻速率,使用了一种氢氧化钾溶液和水作为蚀刻剂,以85%的颗粒供应,蚀刻剂的氢氧化钾浓度根据颗粒重量在30~50%的范围内变化,所选择的温度在40到90度的范围内°C,蚀刻过程中温度...
发布时间:
2022
-
01
-
06
浏览次数:47
扫码添加微信,获取更多半导体相关资料本文研究了氢氧化钾、TMAH(C6H4(OH)2)溶液中氢氧化铵(四甲基铵)和EDP(乙烯二胺(NH2(CH2)2NH2)的浓度和温度对硅表面的影响,制作了光滑的垂直墙和悬吊梳式结构。在蚀刻研究中,在1100C下热生长1lm二氧化硅掩蔽层,然后通过常规光刻和氧化物图案蚀刻对氧化物层形成图案,对于垂直的侧壁,掩模图案应平行于方向对齐,在将样品浸入蚀刻溶液中之前,在缓冲的高频溶液中去除天然氧化物,然后在去离子(DI)水中冲洗,为了更好地晶片区域的均匀性,我们将样品水平保存在蚀刻溶液中。将氢氧化钾薄片溶解到去离子水中制备氢氧化钾溶液,在500ml的氢氧化钾溶液中进行了一系列的蚀刻实验,浓度在10~50wt%之间变化,温度在80~120C之间不等,TMAH溶液(500毫升)是通过稀释市售的TMAH溶液制备的。TMAH浓度在5~25wt%之间变化,蚀刻槽的温度在60~90C之间变化。本研究采用500ml乙烯二胺、80g吡氯苯乙烯和水(DI)作为蚀刻溶液,蚀刻溶液中的EDP含量从71~95wt%不等,蚀刻浴的温度从70~125C不等。 图2图2显示了不同蚀刻浴温度下不同氢氧化钾浓度下硅蚀刻速率的依赖关系,研究表明,20wt%氢氧化钾溶液在80C下的最大硅蚀刻速率分别为1.52lm/min,在120C下分别为15.06lm/min,10w...
发布时间:
2022
-
01
-
05
浏览次数:272
扫码添加微信,获取更多半导体相关资料利用作为掩模的阳极多孔氧化铝的模式转移,制备了具有100nm周期性自有序结构的孔和柱阵列纳米结构,纳米图案的转移是通过一个涉及硅的局部阳极化和随后的化学蚀刻的组合过程来实现的。利用这一方法,可以通过改变蚀刻条件来制造负图案和正图案。阳极氧化铝的多孔模式可以转移到硅衬底中,这可以通过去除氧化硅来实现,氧化硅是由阳极氧化硅阻挡层下的局部阳极化产生的,并试图通过改变化学蚀刻条件,任意制造一个负的或正的图案,一个孔阵列或柱阵列。并提出了一种新的方法来制造硅表面的有序纳米孔阵列或纳米柱阵列,使用的结合过程包括局部阳极化和随后不同的化学蚀刻。本研究将阳极氧化电压设置为40V,草酸溶液的自有序条件产生了一个约100nm周期性的有序空穴结构,通过测量恒定电压下的电流密度瞬态,监测了硅衬底上阳极多孔氧化铝的形成过程,阳极化在不同阶段停止。图2显示了溅射在硅衬底上的铝膜阳极氧化的电流密度瞬态,这个电流-时间曲线可分为两个阶段,上铝膜和底层硅衬底的阳极化,在第一恒流阶段,铝在硅衬底上发生了阳极化。 图 2用原子力显微镜~原子力显微镜观察到硅衬底上的残留,对硅衬底上形成的纳米结构的转变的详细观察,基于局域阳极化的硅衬底上的氧化硅图案的形成机理与在SPM中使用导电探针的光刻技术相似,在使用阳极化的SPM光刻情况下,当尖端施加负偏差时,在尖端和样品之间潮...
发布时间:
2022
-
01
-
05
浏览次数:38
扫码添加微信,获取更多半导体相关资料利用异丙醇(IPA)和氮载气开发了一种创新的晶片干燥系统,取代了传统的非环保晶片干燥系统。研究了IPA浓度是运行该系统的最重要因素,为了防止IPA和热量蒸发造成的经济损失,将干燥器上部封闭,以期开发出IPA和热能不流失的干燥工艺。随着半导体元件的高集成化,线宽变窄,但这种方式由于干燥器上部是开放式的,无法避免在干燥工艺中IPA大量蒸发而造成经济损失,由于IPA泄漏到干燥器上部,气味导致工作环境的恶化,判断为非环保工艺, 此外,由于干燥器上部开放,空气进入干燥器内部自由。这种环境友好的工艺不仅可以降低IPA和热能的成本,还可以改善工作环境,提高水分和氧气的质量。使用干燥的IPA采用了半导体用试剂级,并对COD进行了测定,以进行含氮流体中IPA的浓度分析,在蒸汽发生室连接工艺室的生产线的中间安装了冷凝器,将汽化的IPA冷凝,接在10 L的容器中作为试样,为了准确分析,COD采用了Standard Method的closed reflux方法,利用K2Cr2O7用吸光光度计测量,采用吸光光度法分析、计算了氮气中IPA的浓度。 运载气体氮气经液化氮气汽化调整流量后使用。 图 3为了在单位时间内蒸发大量IPA,改变蒸汽发生室的温度,测定了干燥效率(图3),通过测量工艺室晶片表面出水时间和IPA完全干燥时间,对干燥效果进行了定量...
发布时间:
2022
-
01
-
04
浏览次数:117
扫码添加微信,获取更多半导体相关资料传统湿法清洗工艺在新一代半导体制作中具有根本的局限性,而湿法清洗后利用超临界二氧化碳的干法干燥法是克服这一局限性的替代方法,考察了超临界干燥法作为中间置换溶剂对IPA的二氧化碳溶解度。首先为了比较,采用超临界二氧化碳的干燥方法与传统湿法干燥方法,将IPA中的蚀刻试样之一置于自然状态,另一试样在40℃、140bar条件下超临界二氧化碳, 4分钟后用SEM观测,并观察了IPA的stiction程度,其长宽比增长率为2.5,最大长宽比为37.5的示例,长宽比15后均可见下支撑体粘附现象,但是用超临界二氧化碳,可以看到长宽比没有stiction到最大长宽比由于用最大长宽比为37.5的示例很难判断超临界二氧化碳的效果,所以用最大长宽比为75的示例2观察了不同时间、不同压力、不同温度的效果。为了了解悬臂梁在不同流动时间下的静摩擦力程度,对不同流动时间分别进行了6分钟、8分钟、10分钟和12分钟的实验,结果表明:6分钟时高宽比为30,8分钟时为45,10分钟时为55,12分钟时为65,可见悬臂梁不发生坍塌,这使得flow时间越长,IPA的去除量越大,结构的stiction就越小。(图19)在此基础上对IPA各内部余量的长宽比进行了比较分析, 基于前面使用VOC的数据,当室内余量为850ppm时,长宽比为37.5,当407.8 ppm时,长宽...
发布时间:
2022
-
01
-
04
浏览次数:92
扫码添加微信,获取更多半导体相关资料本研究利用臭氧去离子水(DIO3)开发了拥有成本低的新型清洗工艺(氧化亚钴),臭氧浓度为40ppm,用于去除有机蜡膜和颗粒,仅经过商业除蜡处理后,蜡渣仍超过200A。DIO3代替脱蜡剂在8000a左右对蜡有较多的去除率。将脱蜡器与dio3结合,以减少脱蜡时间和SC-1步骤,DIO3冲洗后的蜡厚度小于50A,而去离子水冲洗后的膜厚度大于200A。用DIO3冲洗代替DI冲洗后,接触角较低,表面完全亲水。用DIO3处理过的表面的光学图像显示了更薄的蜡层,这表明不需要进一步的清洗步骤。将SC-1清洗步骤与DIO3冲洗工艺相结合,进一步提高了颗粒去除效率。为了在短时间内去除蜡,将商用除蜡剂与dio3结合,新工艺的目标是减少脱蜡时间和SC-1步骤。在脱蜡机(1:40)中处理样品4min后,剩余蜡厚度随时间的变化,用dio3冲洗法处理膜后,即使在较短的处理时间内,膜的厚度也低于100a,脱蜡剂处理4分钟后,常规脱蜡和去离子水冲洗工艺后仍有厚度大于200A的蜡残留。另一方面,脱蜡过程后的dio3冲洗而不是去离子水冲洗的蜡含量小于50A。用dio3代替DI冲洗后,接触角降低,蜡残留较少,这表明没有进一步的清洗步骤来去除所需的蜡,冲洗后加入SC-1步骤,无论臭氧处理如何,接触角都完全亲水性。为了确认包括SC-1清洗的几个步骤的PRE,使用200mmp型(100)进行...
发布时间:
2021
-
12
-
31
浏览次数:54
扫码添加微信,获取更多半导体相关资料本研究利用CFD模拟分析了半导体晶片干燥场非内部和晶片周围的流动特性,并根据分析Case和晶片位置观察了设计因子变化时的速度变化。图表分析结果表明,晶圆表面在x轴上的速度分布可以确认烘干机内部从GARS管道喷射下降的气流大部分都经过晶圆中心区域,在y轴上查看速度分布可以确认烘干机顶部到底部由排气引起的速度骤减现象。据判断,晶片×轴两端速度急剧上升的原因是进入晶片区域的气流离开晶片时排气过程中产生的压力差。 图3.1.1 图 3.1.2对Casel进行了模拟结果的现状分析,整体气流的趋势如图3.1.1的遗迹线和图3.1.2,通过观察遗迹线,可以判断,当下降气流乘坐晶片表面流出下部时,气流分成两条支路,这里预计也会出现速度停滞,并有污染物残留的可能性。根据晶片位置的不同,气流的特性也有所不同,特别是晶片6上部产生的下降气流相对于其他晶片而言较大,因此在中心的速度大幅上升,观察到像图3.1.3中一样,下降到晶片中心的气流主边缘的速度急剧上升,这看起来像是晶片2上部左右侧发生的涡流区域向下扩张。而且,在晶片10的下部,在速度转向排气部的过程中,观察到了速度向量的贫化较大的区域。另外,烘干机内部共同出现的涡流区域和流动顺畅。 图3.1.3将气体喷射角降低30度时,管道中喷射的气体的角度朝向烘干机盖和晶片之间,气流无法...
发布时间:
2021
-
12
-
31
浏览次数:63
扫码添加微信,获取更多半导体相关资料本文报道的实验旨在研究表面化学引起的蚀刻刻度的差异,为了分离蚀刻刻放的基本机制,在三种不同的衬底温度下,即Tsub5 85、20和2 45 °C的相同等离子体条件下,蚀刻相同图案的Si和砷化镓样品。由于等离子体条件是相同的,从硅到砷化镓或从一种温度到另一种温度的蚀刻速率尺度的差异不能归因于离子和中性输运效应。由于在两种衬底材料中蚀刻了相同的特征,因此几何因素也保持不变。我们表明,在两种衬底的较高温度下,长宽比比例占主导地位,但对硅的影响明显更强。对于砷化镓和Si,在最低温度下可以观察到一个更复杂的、随时间变化的尺度,同样,这种影响在硅中比在砷化镓蚀刻速率中更明显,数据用纯中性通量阴影的离子中性协同模型35,36很好地描述,在低温下,该模型被扩展到包括一种蚀刻抑制剂的沉积,以解释非长宽比的比例。在总结之前,讨论了这些结果对最小化蚀刻率刻度效应的影响以及其他非均匀性机制的重要性。 图1实验使用电子回旋共振~ECR,见图1。在处理过程中,通过将电容压力计的输出反馈到限制1500l/s涡轮分子泵的泵送速度,来控制2mTorr的腔室压力,石英内衬温度用于近似气体温度38;在本研究中最长的蚀刻期间增加200K,可高达750K。中性通量10%的变化导致本实验长宽比蚀刻率10%的变化,为了引起蚀刻率的变化,通过红外干涉仪现场监测的毯状蚀刻率没...
发布时间:
2021
-
12
-
30
浏览次数:48
扫码添加微信,获取更多半导体相关资料在本文中讲述了制造纳米化硅衬底的无光刻技术的发展,固态脱湿过程和金属辅助的湿式化学蚀刻这两种现象的结合,允许以一种相对简单的方式在大面积上制备硅纳米结胶。本我们的研究目的是开发无光刻技术来制备纳米胶的图案硅衬底,它可用于氮化镓基层的金属有机气相外延生长,并提高了外延横向过度生长方法的质量。在本研究中,使用了用30nm二氧化硅涂层的电阻率为500Ucm的p型Si(111)和Si(115)衬底,采用PECVD工艺,将衬底切成1212mm2的样品。利用PVDUHV系统,采用电子束蒸发法以0.5˚As1,沉积10或20nm的Ni层,然后,在Ni层的850C(RTA)系统下退火,以激活SSD过程,RTA处理在氮气气氛中进行5min,然后,在部分具有10nmNi层的样品上,重复10或20nmNi层的沉积和RTA处理。进行了扫描电镜扫描电镜的表征,以评估样品的表面形貌。为了从扫描电镜图像中确定Ni岛的大小和表面分布,使用了“ImageJ”的粒子表征工具,该工具允许删除单个岛屿区域(像素)及其在图像中的数量,从而允许我们确定岛屿半径、表面密度和覆盖率,覆盖率对应于金属对样品表面的覆盖程度,然后从每个样本拍摄的至少3张SEM图像中计算所有参数的平均值和标准差值,为了确定所得到的硅纳米柱的高度,对样品进行了突破,并进行了横截面扫描和分析。 图1在图中...
发布时间:
2021
-
12
-
30
浏览次数:96