扫码添加微信,获取更多半导体相关资料为了利用蚀刻技术实现更好的捕光效果,它分别考虑了短波长小结构和长波长区域大结构的散射效应,本研究综述了反应机理、蚀刻速率、表面形貌以及玻璃类型的影响,讨论了蚀刻剂的类型和硬掩模层。最后,描述了应用程序和结论。对于玻璃的蚀刻,只使用氢氟酸或其他含高频的水溶液,HF由腐蚀性氢离子(H+)和有毒氟化物(F-)组成,因此以两种方式起作用,酸腐蚀了玻璃表面,从而使有毒的氟化物离子穿透玻璃,一旦进入玻璃中,氟化物离子就会与其他钙相互结合,从而干扰玻璃中的其他化学成分。只有在同时含有HF和浓缩硫酸的蚀刻剂中,蚀刻率高于HF/HCl或HF/HNO3蚀刻剂,这一效应描述了活性氟化HSO3F酸的形成。为了进一步详细说明,缓冲酸蚀刻剂从盐酸到硫酸的作用如表1所示。 表1在第一次反应中,较高浓度的HF产生副产物,然后在蚀刻过程中与硫酸进行第二次反应后,HF发生再生,高频浓度随着硫酸的变化而持续保持,然后随着活化能的增加而持续保持。因此,硫酸的加入可以有效地提高蚀刻率和表面粗糙度。从表面的蚀刻过程来看,这些表面不如机械抛光的表面光滑,这意味着可以将地面表面转化为光学透明的表面。 图2如上所述,盐酸与HF的蚀刻机理略有不同。随着时间的推移,不溶性副产物的尺寸变大,并积累起来干扰玻璃上的蚀刻,然而,盐酸在高频-HCl混合溶液中释放杂质,由此可见,可以看到与...
发布时间:
2021
-
12
-
24
浏览次数:158
扫码添加微信,获取更多半导体相关资料为了形成膜结构,单晶硅片已经用氢氧化钾和氢氧化钾-异丙醇溶液进行了各向异性蚀刻,观察到蚀刻速率强烈依赖于蚀刻剂温度和浓度,用于蚀刻实验的掩模图案在硅晶片的主平面上倾斜45°。根据图案方向和蚀刻剂浓度观察到不同的蚀刻特性,当氢氧化钾浓度固定为20 wt%时,在80℃以上的蚀刻温度下观察到U形槽的蚀刻形状,在80℃以下观察到V形槽的蚀刻形状,蚀刻硅表面产生的小丘随着蚀刻剂温度和浓度的增加而减少。为了了解单晶硅的KOH溶液和KOH-IPA混合用液的各向异性湿式蚀刻特性,利用CZ法生长的4英寸(100) n型硅片。首先,形成了湿式氧化方式购买的硅(SiO2)膜4300 A,为了提高PR与氧化硅膜的附着力,首先涂上了HMDS(己烯)溶液,感光液涂层后,利用对流式OVEN在90℃~ 10分钟进行热处理(soft bake),这一过程增加了涂层后残留的溶剂,增加了感光液与晶片之间的粘合。将显影液DPP-100在室温下按原液原样使用,显影了1分钟。现象结束后,晶片在120℃下热处理10分钟,防止感光膜受损。 图1在此过程中,将准备好的晶片切割成0.5 × 0.5 cm2大小,然后将切割的硅标本切割成BOE在溶液中浸泡5分钟,根据面膜模式冷却氧化膜,随后用PPS-100N stripper溶液去除了感光膜,此时,硅晶片上残留的氧化膜层...
发布时间:
2021
-
12
-
24
浏览次数:45
扫码添加微信,获取更多半导体相关资料为了阐明蚀刻残留物的形成机理,研究了氯/氦-氧、溴化氢/氦-氧和溴化氢/氯等不同气体混合物的影响,我们发现,在氧的存在下,蚀刻残留物形成良好,这表明蚀刻残留物是由氧和非挥发性卤化硅化合物的反应引起的,湿法清洗和干法蚀刻清洗工艺被用于去除多晶硅蚀刻残留物,这可能影响电特性和进一步的器件工艺。XPS结果表明,湿法清洗适用于蚀刻残留物的去除。 本文利用HBr/Cl/He-O2反应气体对多晶硅进行反应离子蚀刻后,利用X射线光电子能谱(XPS)和电子显微镜(SEM)对表面形成的杯状流层进行了研究,为了查明蚀刻残留物的形成机制,从原来的混合气体成分中分别排除了一种成分的反应气体,观察了其效果。同时,为了消除使用HBr/CI/He-O2混合气体冷却后形成的残留层,引入了湿法和干式工艺进行了比较。图1图1是实验顺序的图表,首先,在生长了约100 nm厚的热氧化物的(100) p型硅晶片基板上,用LPCVD方法将多晶硅生长了约550 nm,然后,利用64 MDRAM S1口罩对准备好的基板进行图案设计,然后进行了蚀刻实验,蚀刻条件是RF功率为150 w,反应汉堡王的压力保持在100 mTorr,磁场保持在75 Gauss,在此条件下,蚀刻速率约为200 nm/ min。为了查明蚀刻残留物的形成机制,将原来的反应气体成分中的一个成分各排除在外,进行了进一步...
发布时间:
2021
-
12
-
24
浏览次数:46
扫码添加微信,获取更多半导体相关资料本文章将对表面组织工艺优化进行研究,多晶硅晶片表面组织化工艺主要分为干法和湿法,其中利用酸或碱性溶液的湿法蚀刻工艺在时间和成本上都比较优秀,主要适用于太阳能电池量产工艺。本研究在多晶晶片表面组织化工艺常用的HF/HNO3混合溶液中加入CH3COOH进行了实验,通过湿法蚀刻工艺得到的多晶硅晶片的反射率和太阳能电池的光转换效率变化,试图为湿法蚀刻找到合适的条件。湿法蚀刻工艺主要用于多晶晶片的表面组织化,在多晶晶片中,每个晶粒的蚀刻形状都不同,因此采用酸溶液各向同性蚀刻,湿法蚀刻的酸溶液是HF和HNO3,虽然常见的是与DI混合的溶液,但也会加入CH3COOH,观察各溶液的化学反应式和机理,HNO3与Si作用首先产生SiO2氧化物,SiO2被HF蚀刻生成H2O和H2SiF6,H2SiF6 由于是水溶性物质,对化学反应作用影响不大。通过改变湿法蚀刻溶液中HNO3和HF的浓度,可以改变蚀刻速度和表面组织化,H2O稀释了HNO3的浓度,CH3COOH减少了HNO3的降解,从而对蚀刻速度产生影响。 本实验通过相同条件的溶液给蚀刻时间以变化(15秒、30秒、45秒、60秒),分析表面形貌变化,并进行反射率及效率测定。实验使用的基片为boron兴奋剂的p-type多晶晶片,具有1~3·cm,具有非电阻、200微米厚、尺寸为15.6×15.6 cm...
发布时间:
2021
-
12
-
23
浏览次数:39
扫码添加微信,获取更多半导体相关资料在本研究中,我们设计了一个150mm晶片的湿蚀刻槽来防止硅片的背面蚀刻,并演示了优化的工艺配方,使各向异性湿蚀刻的背面没有任何损伤,我们还提出了300mm晶圆处理用湿浴槽的设计,作为一种很有前途的工艺发展。为了使用KOH对硅进行湿法蚀刻,需要硬掩模,一般情况下,硬面罩采用热处理氧化膜(Thermal oxide)、PECVD SiO2、Si3N4等绝缘膜或aluminum(Al)等金属膜,缺点是Al在去除过程中会产生污染热点,Si3N4作为硬掩膜与KOH反应较少,但后续湿法难以去除,对于氧化膜而言,PECVD沉积的氧化膜比热处理氧化膜在膜质内存在的氢组分多,因此蚀刻率约高2倍。 因此,本研究采用与硅的选择比良好且易于去除的热处理氧化膜作为硬掩膜。 图2利用上面的公式,在图2预测了硅烷和氧化膜在不同温度和浓度下的蚀刻率,如2所示。 硅在浓度为23wt%,氧化膜在浓度为37wt%时蚀刻率最高,在此基础上,考虑了硅和氧化膜的选择比,以形成最合理的条件,图3选择比在13%中最高,工艺温度设定在38℃,希望尽可能减少硬面罩氧化膜的反应。 图3氢氧化钾湿蚀刻中Si、二氧化硅的选择性进行实验时,在显微镜下观察了硅与KOH的正常反应,如图6,实验在没有单独装置的情况下,对硅进行了蚀刻,确认了晶片背面蚀刻的现象,这使得晶片整体厚度变薄,硅的硬度...
发布时间:
2021
-
12
-
23
浏览次数:36
扫码添加微信,获取更多半导体相关资料湿化学蚀刻是多晶硅表面纹理化的典型方法,湿化学蚀刻法也是多晶体硅表面锯切损伤的酸织构化或氢氧化钾锯切损伤去除后的两步化学蚀刻,这些表面纹理化方法是通过在氢氟酸-硝酸-H2O的酸性溶液中进行化学蚀刻来实现的。在这种解决方案中,我们可以通过简单的工艺蚀刻多晶硅表面来降低反射光谱。在400 ~ 1100纳米范围内,氢氧化钾锯损伤去除后的酸性化学腐蚀获得了27.19%的反射率。这一结果比刚刚锯下的损伤去除基底少约7%。用显微镜和扫描电镜观察表面形貌。本实验中使用的多晶硅晶片是boron掺杂的p-type,电阻为1约厘米,具有2 X 2例rf大小,基板在80℃的30%氢氧化钾(KOH)溶液中冷却7分钟,去除Saw damage的基板浸泡在HF-HNO3-H20组成的水溶液(solvent)中冷却。在同样的条件下实施了,不同水溶液中硝酸的浓度不同,分别为S1、S2、S3。 图1KOH saw damage的基板(图1a)将乙浸泡在水溶液中,初期,针孔等窄宽度的微孔(pore)开始局部形成,随着蚀刻时间的延长,这种微孔的数量逐渐增加,其宽度也扩大,如图1b得到了同样的基板。随着蚀刻时间的持续,有时会形成新的微孔,随着已形成的微孔的宽度顶点扩张,大多数微孔都被培养成了西,形成了一个新的微孔如图1c,会冻结像这样的表面的基底。 微孔的形态随着蚀刻时间的变...
发布时间:
2021
-
12
-
23
浏览次数:29
扫码添加微信,获取更多半导体相关资料随着半导体技术的发展,为了在有限的面积内形成很多器件,技术正在向多层结构发展,要想形成多层结构,将形成比现有的更多的薄膜层,这时晶片背面也会堆积膜。如果在背面有膜的情况下进行batch方式的润湿工序,背面的膜会脱落,污染晶片正面。特别是Cu如果受到全面污染,就会成为严重的问题。 目前,在枯叶式设备中,冷却晶片背面膜的方法是翻转,翻转晶片进行蚀刻工艺的话,蚀刻均匀度最好在1%以下,但是,如果一面进行工程,工程时间将增加一倍,为了减少工序时间,对在进行顶面工序的同时进行背面工序的方法进行了评价。 图1图1是一种300毫米枯叶式装置的模拟图,包括可以蚀刻晶片背面的喷嘴,晶片背面与喷嘴的距离约为1.5厘米,晶片固定为6艘,工艺进行,主轴头最多可旋转2000RPM,使用的晶片是 300毫米。 图2图2是为晶片背面蚀刻制作的喷嘴,喷嘴由药液喷射部分和DIW喷射部分各组成,药液喷射孔直径为0.7毫米,孔与孔之间的间距设计各不相同,孔的间距是根据300毫米晶片的面积设计的,实验中使用的晶片是SiaN4在硅晶片上沉积约2000A,用于蚀刻的 药液使用HF 49%,为了提高蚀刻效果,药液的温度上升到60℃, 药液的流量为1L/min,进行了蚀刻评价,工艺中DIW为1L/min。 在蚀刻工艺中,为了提高均匀度,在晶片中央部分喷射氮气,氮气...
发布时间:
2021
-
12
-
23
浏览次数:48
扫码添加微信,获取更多半导体相关资料本研究论文通过防止湿法蚀刻造成过多的晶体硅损耗,以降低原材料,实现在用薄基板材料的生产效率和低值化、高效。为查明进入率的表面组织对异种结太阳能电池特性的依赖性,进行表面组织并随之产生的硅基板表面缺陷,分析了非晶硅薄膜的被动特性变化,最后试图确定这种特性变化对异种结太阳能电池运动特性的影响。用不同方法洗脱的晶片和未进行洗脱处理的问题晶片、绘制正常晶片,用Fourier变换基础辐射(FTIR)进行了测量,并用计算机程序Origin对测量的数据进行了对比分析, 以分析的结果为基础,了解了污染物的特性,确定了不同洗净方法是否能去除妖染物质以及洗净效果等,并对每种方法洗净后的晶片进行表面蚀刻处理,用肉眼确认是否有正常的表面处理结果,并用反射率(reflectance)测量仪对表面处理结果及改善程度进行了测量分析。 以分析的结果为依据,确立了洗净效果最好的前处理洗净方法。本实验采用太阳能电池Si基板,单晶硅的各向异性(anisotropic)纹理(Texturing)被认为是太阳能电池中有效减少光反射的一种方法,一般采用在NaOH或KOH中加入isopropyl alcohol(IPA)的溶液,这些溶液在(100)方向形成不均匀(random)的upright pyramid,纹理(Texture)后,在400~1100nm波长区域,silicon...
发布时间:
2021
-
12
-
23
浏览次数:39
扫码添加微信,获取更多半导体相关资料本研究研究了湿法蚀刻下硅晶片背面的表面特性,测量分析表面形状、表面电阻、测量范围下的表面粗糙度,分物理特性和电特性,对比分析相关关系,并最终确定,目的提高产品的电特性,采用P-type晶片蚀刻,蚀刻溶液以氢氟酸、硝酸为基础,以醋酸为添加剂。本研究使用的晶片是利用Czochralski法生长成单晶硅烷晶片,向晶方向生长制备而成,是添加了13族元素硼(B)的p-type,比电阻为1~10ohm·cm,厚度为600μm,制作完成后前表面进行了聚能处理,后表面进行了磨边处理,蚀刻溶液的制备如下: 分别为氢氟酸、硝酸和醋酸,各自浓度分别为55、60和99.85 wt%。 将硝酸和乙酸固定为8wt.%,氢氟酸变为28、30、32、34和36wt.%,其余量为超纯。 每个样品名与氢氟酸浓度相匹配,分别为HF28、HF30、HF32、HF34、HF36,制备了蚀刻溶液,然后将硅晶片滴定到蚀刻溶液中进行了蚀刻, 此时,蚀刻时间保持在10分钟,蚀刻温度保持在40℃,蚀刻前后用18MΩ的超纯水对晶片进行了清洗,干燥采用了气动干法。主要分为物理特性和电气特性进行了测量和分析,物理特性再测量了表面形貌和表面粗糙度,电特性则用硅晶片的表面电阻和比电阻测量进行,首先在表面形貌测量上分宏观和微观两个区域进行,区域用AFM进行了测量,表面粗糙度测量用AFM和α...
发布时间:
2021
-
12
-
22
浏览次数:99
扫码添加微信,获取更多半导体相关资料本研究透过数值解析,将实验上寻找硅晶片最佳流动的方法,了解目前蚀刻阶段流动的形式,并寻求最佳晶片蚀刻条件,蚀刻工艺效率低利用气泡提高湿法蚀刻工艺效果,用实验的方法寻找最佳流动,通过数值分析模拟了利用这些气泡的湿法蚀刻工艺,并得出最佳湿法蚀刻。如图2所示,bath内一次性加入晶片少则25片,多则50片,因为有这么多的晶片,所以晶片和晶片之间的间隙很小(6.35 mm),所以晶片和晶片之间的流体会沿着晶片进行固体旋转,这使得蚀刻的效果会掉下来,气泡也需要在bath内精确定位并产生,但要真正精确定位并产生气泡就有一定的困难,如前所述,蚀刻是无效的,本研究尝试用计算机对这种湿法蚀刻工艺进行数值分析及模拟,并在各种条件下交替寻找最佳流动条件。 图6晶片速度设为30rpm,在不产生气泡的状态下计算,以绝对速度和相对速度表示,如图6所示,此时晶片之间的流动与晶片一起在进行固体旋转,在晶片边缘可以看出,受外部流动的影响,速度小于固体旋转,对相对速度求出圆周方向的平均值,定义为平均蚀刻速度,并在图7(b)中给出,另外,对半径方向的平均蚀刻速度进行比较,结果表明,越往外,速度越大, 可以看到图7(c)相对速度高的地方被蚀刻得多了一些,当平均蚀刻速度为v→时,蚀刻形状计算如下: z=z0-CV→t(6)其中c为比例常数,t为蚀刻时间。 图...
发布时间:
2021
-
12
-
22
浏览次数:17