扫码添加微信,获取更多半导体相关资料本文报道了(110)、(100)晶体定向硅上制备的p通道MOSFETs的低频噪声与硅表面的微粗糙度有关,由于传统的RCA清洗工艺使表面更加粗糙,特别是在(110)取向的情况下,开发了不使用碱性溶液的5步室温清洗工艺,这种新的清洗工艺与微波激发的高密度等离子体氧化工艺相结合,形成门氧化物,而不是标准的900°C热氧化工艺,导致微粗糙度降低。此外,这种减少不仅可以观察到(110)的取向,而且也可以用同样的方法观察到(100),尽管其程度要小得多。 图2首先使用一个矢量信号分析仪进行对排水电流噪声测量,连接到一个低噪声前置放大器,为了找到目标偏置点参数,采用模块化直流源偏置目标偏置,然后将该源被超低噪声直流源取代,进行最终的噪声测量,如图2的Id-Vd曲线所示,(110) pMOSFET的一个有趣特性是电流运行能力是(110)方向的2.5倍,这个特性保证了更快的工作频率,但是(110) CMOS数字和模拟电路可能没有竞争力,而不会降低1/f噪声,如图3所示,与(100)pMOSFETs相比,通过常规RCA清洗制备的(110)pMOSFETs的噪声水平仍比(100)pMOSFETs高出近20年,且必须严重降低这一水平。作为RCA清洗的替代品,开发了5步室温清洗工艺,这项新技术有一个非常简单的程序,在清洗结束时只冲洗一次,可以在小于5m...
发布时间:
2022
-
02
-
23
浏览次数:34
扫码添加微信,获取更多半导体相关资料本文研究了在氢氧化钾、EDP等各向异性蚀刻溶液中,在这些溶液中,蚀刻速率强烈依赖于硅单晶的晶体取向,关于实验结果的广泛讨论可以找到,使用晶体生长速率的模型来寻找各向异性的起源,这一观点对蚀刻速率图的一些细节有影响,这将在这里进行探索,并与获得的实验数据进行比较。平面通常可以从晶体学中发现,然而在金刚石晶格中,其他的表面可以是平坦的,因为额外的表面效应,如吸附和表面重建,至少在室温下蚀刻氢氧化钠时是这样。如果溶液中存在大分子,最小值会变得更加明显(在EDP和在溶液中加入IPA时),也许这些分子在h110i取向的硅表面上连接了平行运行的键链,稳定了硅表面,并在h110i上产生非零阶跃自由能,在温度的依赖性中,没有成核势垒,步速仅由化学反应速率和沿表面和体积的输运给出,Sih111i蚀刻速率的活化能与速度步的活化能的差产生成核势垒的高度1G。如果步骤之间的距离变得很宽,即如果2变得非常小,这种依赖性就会改变,最终,步骤间的核密度变得非常大,导致取向错位导致的步骤总步骤长度小于成核导致的步骤长度。 图3此情况如图3所示,在上部在这些步骤之间有一个原子核,左边的两步通过运动发生碰撞,相互湮灭,原子核的存在只会在很短的时间内改变步数,如果有更多的原子核,成核速率与取向无关,在接近h111i时,蚀刻速率并不依赖于取向,当2变得足够大时,方向错误步骤接...
发布时间:
2022
-
02
-
23
浏览次数:17
扫码添加微信,获取更多半导体相关资料在本研究中,原子力显微镜(AFM)已被用来生成纳米尺度的网格线,并将其转移到感兴趣的材料中,AFM诱导的硅局部氧化是一种具有强大的近端探针纳米制造潜力的过程,本研究讨论了蚀刻温度、蚀刻深度和线宽之间的关系,并介绍了超声搅拌来提高表面粗糙度和纳米结构的形貌,最后,对优化后的纳米网格线结构进行了验证。所有实验均采用(110)取向硅片进行,硅衬板的电阻率约为1~10欧姆-厘米,样品的制备方法如下:标准RCA清洗,去除天然氧化物,在5%氢氟水溶液中钝化氢,然后用SPL进行局部氧化过程,SPL是在使用Park科学仪器(PSI)自动探针M5原子力显微镜(AFM)的空气中进行的,使用高掺杂硅悬臂尖端(尖端半径约为10~15nm,电阻率约为0.01~0.025ohm-cm),尖端/样品力保持在10nN(~0.01μm高度),尖端和样品之间的电压偏差产生电场,迫使电子和负移动离子(O-)进入样品中。在局部氧化后,引入取向依赖的蚀刻工艺,获得纳米级纳米结构,由于晶体平面不同,化学键量不同,因此(111)平面的蚀刻速率最慢,导致与其他晶体平面的各向异性蚀刻。在本研究中,还引入了超声波搅拌(43kHz),以提高蚀刻过程的表面粗糙度和均匀性。最后,利用扫描电子显微镜(SEM)对其表面形态进行了表征,并进行了纳米尺度线宽的测量。为了利用氢氧化钾湿蚀刻系统对硅纳米结构进行优化...
发布时间:
2022
-
02
-
22
浏览次数:23
扫码添加微信,回去更多半导体相关资料两种不同类型的总有机碳分析仪在远足,两者都是无试剂超纯水分析仪,利用高强度短波紫外光将有机碳氧化成二氧化碳。二氧化碳会溶解在去离子水中,形成碳酸氢根离子,导致溶液电导率增加。然后,分析仪测量在氧化步骤前后产生的二氧化碳的浓度,并使用不同的算法将这个差分值转换为TOC浓度。因为这两种分析仪对二氧化碳的方法不同,它们对TOC的反应不同,分析仪Y直接测量紫外反应器前后的电导率变化,由于在紫外氧化过程中,除了碳酸氢盐离子外,还可以产生卤素、硝酸盐和硫酸盐,分析仪Y并不总是准确地测量实际TOC浓度。分析仪X通过让二氧化碳通过选择性渗透膜扩散到未氧化水的样品中,然后测量所得溶液的电导率,该膜阻断了由氧化反应产生的其他离子,只允许二氧化碳导致分析仪X的电导率差异,从而可以准确测量TOC浓度。这两种分析仪并没有记录TOC偏移的相似结果,而是报告了非常不同的结果。话虽如此,每个人在识别导致远足的组成部分方面都发挥了独特的作用,分析仪X提供了一个稳定、准确的TOC信号,并且足够敏感,可以在分析仪Y之前就检测到短途旅行的开始,然而,分析仪Y对浓度小于约15ppb时的波动有机物缺乏响应的特征被证明是识别导致TOC波动的污染物的重要线索。 图1从其中一个受影响的UPW系统中收集到的TOC数据,显示了两种不同的TOC分析仪的不同响应,如图1所示,实曲线对应分析仪X...
发布时间:
2022
-
02
-
22
浏览次数:81
扫码添加微信,获取更多半导体相关资料本文讨论了自旋上的有机和无机硬掩模的研究进展,与CVD选项相比,附加选项提供了高吞吐量和几种替代材料选项,自旋碳(SOC)是一种含高碳的聚合物溶液,作为涂层材料,需要溶于有机溶性。介绍了在良好填充、低排气、高热稳定性和平面化性能方面的进展。图1图1显示了SOC聚合物的一般结构,图2是由1-(9-邻烯烯基)-3-苯基-2-丙基-1-醇(A)、对苯酚(PP)和二苯基苯(DVB)组成的SOC聚合物示例。通过将高碳聚合物溶解在上述安全溶剂中,得到了一种典型的SOC配方。有些聚合物在一定的烘烤温度以上是自交联。一般使用自交联聚合物可以有效地交联,有助于减少废气。根据聚合物类型的不同,配方中加入了交联剂和热酸发生器(TAG)等其他成分,以便在随后的BARC和抵抗涂层中烘烤后不会发生混合。典型的SOC烘烤温度范围在220到400°C之间。 图2在烘烤过程中应尽量减少废气,因为在烘烤过程中产生的可凝结气体侧产品会污染热板单元,造成生产环境缺陷。在石英晶体平衡上累积收集在250°C烘烤的20个6英寸晶圆60秒的可凝材料的优化SOC配方的废气量,新版本的SOC配方有助于减少排气量,比旧版本减少约4倍。在三层过程中,通过氟碳等离子体蚀刻,如四氟化碳、CHF3或C4F8,将抗蚀剂图案转移到SiBARC上,用氧等离子体将模式从SiBARC转移...
发布时间:
2022
-
02
-
21
浏览次数:42
扫码添加微信,获取更多半导体相关资料为了研究通过无缺口硅蚀刻和湿法清洗最后一种工艺形成的小通硅孔(TSVs)的有效性,我们制造了一个具有阵列的薄芯片,引入静电卡盘级磁头,抑制薄芯片的扭曲,通过采用软材料凹凸,在低温和低压压载下堆积芯片,对薄芯片的TSVs和Si区域进行堆叠,对堆叠的芯片进行了4端和菊花链的测量,我们的实验证实,多层布线+TSV+凹凸连接表现出低电阻,菊花链完美连接多达38000个TSV。作为一种实现小型,高速,高功能,低功耗电子系统的技术,该技术的应用领域有很多,其中之一是表面传感型三维结构高性能传感器系统,表面感测型传感器芯片和信号处理电路芯片分别制造,并通过使用TSV和凸块进行层压连接,具有以下优点:(1)容易采用与传感器匹配的工艺/材料,并且容易提高传感器的灵敏度;以及(2)由于布置的自由度增加,因此可以增加传感器面积比;另一方面,为了实现这一点,需要以低成本和高产率形成许多精细TSV,并在纵向方向上连接它们。为了实现这一系统,我们专注于通孔最后的TSV工艺,该工艺的数量很少,并且易于降低成本,到目前为止,在晶片水平上,已经确认该工艺可以以高产率(约83%)形成直径约6微米的精细TSV,为了进一步确认这种精细TSV的有效性,我们报告了以高密度阵列排列精细TSV的薄芯片的形成和实际层压安装的结果。首先,对8英寸的Si晶片进行边缘修整,通过3M晶片支撑系统,通过U...
发布时间:
2022
-
02
-
21
浏览次数:36
扫码添加微信,获取更多半导体相关资料本文研究了激光诱导背面湿蚀(LIBWE)工艺对透明材料的加工工艺。在此过程中,进行了实验研究和数值计算。用ArF准甲酸激光器照射,以萘-甲基甲烯酸甲酯溶液作为吸收液。蚀刻率依赖于应用的激光通量来自蚀刻深度,使用原子力显微镜(AFM)测量。根据激光通量的不同,蚀刻率为4.7~49.5nm/脉冲。用原子力显微镜法研究了蚀刻边缘的表面形貌。利用记录的快照计算了膨胀气泡的内部压力。在准分子脉冲峰值后,发现其长度为22-120MPa17.2ns。用有限差分法求解了包括处理后的熔融硅层熔化和吸收溶液汽化在内的一维热流方程。熔融二氧化硅的表面温度在准分子脉冲峰值后达到最大17.2ns。基于我们的结果,我们提出了一个可能的解释的LIBWE程序的熔融二氧化硅。LIBWE融合的二氧化硅的阈值通量假设在110~210mJcm−2之间,因为在我们早期的实验中,蚀刻在110mJcm−2时没有观察到,而在210mJcm−2时发生。图3显示了通蚀刻速率(单激光脉冲去除层的厚度)函数。对测量数据拟合了两条不同斜率的测线。蚀刻速率在通量值330mJcm−2以下缓慢增加,并在其以上迅速增加。 图 3 蚀刻速率依赖于所应用的激光通量如前所述,气泡的形成是刻蚀过程中的一个重要现象。数值计算结果表明,由于液体的吸收层在激光照射结束前达到了沸点,因此在激光脉冲期间就开始了气泡的形...
发布时间:
2022
-
02
-
18
浏览次数:135
扫码添加微信,获取更多半导体相关资料本文提出了一个利用基本物理机制的数学模型,并提供了一个全面的过程模拟器。该模型包括流体流动、静电效应以及体积和表面的相互作用,应用于研究基于高频的高k微纳米结构的图案晶圆冲洗动力学的具体案例,研究了水流、晶圆旋转速率、水温、晶圆尺寸、晶槽位置等关键冲洗工艺参数的影响。 图1冲洗过程中旋转晶圆表面的流体流动模式示意图如图所示1a。在晶片中心引入的冲洗水从中心向边缘流过晶片表面,水膜的形状围绕z轴是对称的,该沟槽如图所示1b,表示微观或纳米结构,晶片上的冲洗水层由两个区域组成:待清洗的沟槽内以及在旋转晶片上形成的薄膜内。杂质冲洗和去除过程中涉及的各个步骤受到基板壁表面电荷的影响,该电荷受到晶片表面附近边界层的成分的影响,开发单晶圆旋转漂洗工具过程模型所涉及的关键配置和操作参数是旋转速度、水流、水温、晶片尺寸、特征尺寸和初始污染物浓度,本研究中的污染物为1%的氢氟酸,该模型考虑了漂洗过程的细节,包括液相和高温高k表面的化学反应,以及电场下的扩散、对流和迁移,模型参数,如表面相互作用速率系数和扩散系数,取决于杂质的类型和表面的化学性质。对表面充电会导致微纳米结构表面附近形成静电场,这种静电场会影响到沟槽内离子的分布,随着沟槽尺寸的减小,在沟槽表面附近形成的德拜层变得更加重要,并影响了沟槽内离子的输运,这个德拜层的厚度与离子种类的浓度成反比,因此...
发布时间:
2022
-
02
-
17
浏览次数:10
扫码添加微信,获取更多半导体相关资料本研究揭示了在正常加工条件下烘烤后含有大量金属氧化物的新型自旋底层材料,这种无机金属硬掩模(MHM)在三层叠的等离子体蚀刻过程中具有良好的蚀刻选择性,基于溶液LPC分析和晶圆缺陷研究,该成分具有良好的长期保质期和锅的寿命稳定性,该材料吸收DUV波长,可作为无机或混合抗反射涂层,控制DUV暴露下的基底反射率,其中一些含金属材料可以作为EUV光刻技术的底层,以显著提高光速度,特定的金属硬掩模也被开发用于IRT过程中的通过或沟槽填充应用,在ArF干燥或浸没条件下,薄膜厚度低至10nm,具有良好的涂层和光刻性能,此外,通过在环境温度下使用各种湿蚀刻溶液,可以部分或完全去除金属氧化物膜或残留物。为了测试薄膜的溶剂抗性,在涂有底层材料的硅片上分配诸如丙乙二醇单甲基乙酸乙酯(PGMEA)或乳酸乙酯(EL)等溶剂,60s后用氮气扫光去除溶剂,在浸泡前后,通过视觉或测量薄膜厚度来检测薄膜的完整性,为了测试薄膜的显影剂电阻,在涂层晶片上分配AZ®300MIF显影片,60s后用水冲洗晶片,用氮气干燥,在浸泡前后,通过视觉或测量薄膜厚度来检测薄膜的完整性。采用元素分析和TGA减重测量(煅烧)的方法测定了金属氧化物薄膜中的金属%wt/wt,样品在腔室中的氧气下从20°C/60s的室温加热到800°C,并在煅烧过程中在800°C的恒温...
发布时间:
2022
-
02
-
17
浏览次数:236
扫码添加微信,获取更多半导体相关资料本研究利用大气等离子体,以等离子体表面处理取代化学辅助有机清洗工艺,减少三氯乙烯和氢氧化钠等化学物质的使用。通过采用大气等离子体处理,在不使用危险化学品的情况下,获得勉强可接受的电镀和清洁结果,实验结果表明,从环境友好的角度来看,用等离子体处理代替化学过程是合理的,此外,还对浸锡/铜进行了等离子体处理,以了解等离子体处理的锡/铜的可焊性,用于实际工业应用。本实验采用的MyPLTM最大直列可处理300 mm的电路板尺寸,适用于大体积微电子封装制造环境,该系统由射频电源系统、气体输送系统和等离子体产生系统三部分组成,射频电源系统采用13.56兆赫射频电源,带有自动阻抗匹配模块,气体输送系统有四个带数字控制系统的质量流量控制器。 图1实验的起点是通过扫描电镜图像比较镀铜样品,扫描电镜图像是通过常规化学清洗和等离子清洗从样品中获得的,将两个铜箔样品用水清洗,用化学试剂和等离子体有机清洗,用H2SO4酸洗,并用硫酸铜4H20对清洗后的铜样品进行电镀。图1显示了电镀后的扫描电镜图像,但是不清楚哪种清洗方法优于另一种,似乎图1(b)是等离子体清洁的样品,显示了局部形成的稍大的铜颗粒,但是图1(a)显示了更均匀的表面。通过扫描电镜图像观察清洁效果可能会导致表面的近视,因此在以下实验中选择了更宽的观察视野。 图2 化学清洗是通过将样品...
发布时间:
2022
-
02
-
15
浏览次数:79