欢迎访问南通华林科纳半导体设备技术有限公司官网
手机网站
始于90年代末

湿法制程整体解决方案提供商

--- 全国服务热线 --- 0513-87733829



新闻资讯 新闻中心
400-8798-096
联系电话
联系我们
扫一扫
QQ客服
SKYPE客服
旺旺客服
新浪微博
分享到豆瓣
推荐产品 / 产品中心
发布时间: 2016 - 03 - 14
2设备构成及详细技术说明2.1工艺说明 2.2.台面结构图如下      3.设备说明3.1 排风系统●排风装置(排风压力、风量根据实际情况或客户要求设计)将设备内挥发的有毒气体抽到车间排风管道或户外(室外排放遵守国家环保要求),避免扩散到室内;●排风通道内设有风量导流板,从而使排风效果达到最佳;●本体顶部后方自带强力抽风1个风道口装置(每个药剂槽对应一个),排风口直径大于或等于 200mm 与本体焊成一体;●排风口处设有手动调节风门,操作人员可根据情况及时调节排风量;3.2设备防护门:●本体前方安装有防护隔离门,隔离门采用透明PVC板制成,前门可以轻松开合,在清洗过程中,隔离门关闭,以尽量改善工作环境并减小对人体的伤害. ●形式:上下推拉门。3.3 给排水/废液系统●给水管路为一路去离子水;●给排水排废接头均为活性连接;●排放方式均采用气动控制的方式来保证安全3.4 电气控制系统●采用优质PLC可编程控制器控制全操作过程, ●人机界面为触摸屏,接口中有手动操作、故障报警、安全保护等功能,各工作位过程完成提前提示报警,触摸屏选用优质产品;●触摸屏加锁定,以防非授权人员修改或设定参数;●所有电控部分需独立封闭,带抽风系统,独立的配电柜●设备照明:设备其它部位--低电压灯,根据工作需要可控照明;●设备整体采取人性化设计,方便操作;并装有漏电保护和声光报警提示装置,保证性能安全可靠;电控部分导线采用耐高温、耐腐蚀的专用导线,电气控制部分内部还通有压缩空气保护,可防水耐腐蚀;●设备所有处于腐蚀腔中的线缆均通过PE管进行保护,免受腐蚀;●设备具有良好的接地装置;
发布时间: 2016 - 03 - 14
设备概况:(仅做参考)主要功能:本设备主要手动搬运方式,通过对硅片腐蚀、漂洗、等方式进行处理,从而达到一个用户要求的效果。设备名称:KOH  Etch刻蚀清洗机           设备型号:CSE-SC-NZD254整机尺寸(参考):自动设备约2500mm(L)×1800mm(W)×2400mm(H);被清洗硅片尺寸: 2--6寸(25片/篮)设备形式:室内放置型;操作形式:手动各槽位主要技术工艺:设备组成:该设备主要由清洗部分、抽风系统及电控部分组成设备走向:方案图按 “左进右出”方式,另可按要求设计“右进左出”方式;设备描述:此装置是一个全自动的处理设备。8.0英寸大型触摸屏(PROFACE/OMRON)显示 / 检测 / 操作每个槽前上方对应操作按钮,与触摸屏互相配合主体材料:德国进口10mmPP板,优质不锈钢骨架,外包3mmPP板防腐;台面板为德国10mm PP板;DIW管路及构件采用日本进口clean-PVC管材,需满足18M去离子水水质要求,酸碱管路材质为进口PFA/PVDF;采用国际标准生产加工,焊接组装均在万级净化间内完成;排风:位于机台后上部工作照明:上方防酸照明三菱、欧姆龙 PLC控制。安全考虑:设有EMO(急停装置), 强电弱点隔离所有电磁阀均高于工作槽体工作液面电控箱正压装置(CDA Purge)设备三层防漏  楼盘倾斜   漏液报警  设备整体置于防漏托盘内排放管路加过滤装置所有槽体折弯成型,可有效避免死角颗粒;更多化学品相关湿法腐蚀相关设备(KOH腐蚀刻蚀机、RCA清洗机、去胶机、外延片清洗机、酸碱腐蚀机、显影机等)以及干燥设备(马兰戈尼干燥机Marangoni、单腔...
新闻中心 新闻资讯
扫码添加微信,获取更多半导体相关资料引言半导体生产过程中,蚀刻工艺是非常重要的工艺。蚀刻工艺中使用的方法通常有浴式和枯叶式两种。浴式是用传统的方法,在药液浴中一次性加入数十张晶片进行处理的方法。但是随着半导体技术的发展,开发出了一张处理晶片的枯叶式。在常温的药液中,浴式的均匀度在3%以上,而每叶式的均匀度在1%以下,非常优秀。另外,与浴式相比,枯叶式的超纯用量少1/15左右,在Cu工艺等担心金属污染的工艺中处理晶片一张,从而防止反向污染。枯叶式是一次性展示晶片时喷射书药液的方法。这时喷射喷嘴可以从伟珀中心向边框方向来回转动,通过boom swing均匀地冷却。本方法将batch和batch结合起来,用没有boom swing的方法评价了蚀刻工艺。在进行蚀刻工艺时,以消除boom swing为基础,用晶片上有板的结构制作了枯叶式装置,进行了蚀刻评价。在没有Boom Swing的枯叶式结构中,将常温的药液从晶片中央喷射出来进行了蚀刻评价,并进行了评价,以了解使用高温药液时的结果果。使用高温药液时,出现了口感不均匀的问题。对此时发生的问题进行了这一理论考察,并在理论计算结果的基础上,改进了高温药液的喷射方法。 实验利用枯叶式装置,用晶片上有板的词组制作了装置,进行了评价。图2是有桌面制作的枯叶式装置的外观。晶片的旋转最高可达2000RPM,使用晶片的大小为300 mm。...
发布时间: 2021 - 11 - 06
浏览次数:5
扫码添加微信,获取更多半导体相关资料引言随着集成电路器件制造工业追求更小和更先进的技术,其制造工艺的效率和精度变得越来越重要。微细加工的关键工序之一是特征的蚀刻和清洗。随着特征尺寸的扩大,清洗化学品的润湿对于去除亚45纳米结构中的蚀刻碎片至关重要。这些化学物质及其润湿行为如何随时间变化,将关系到清洗过程的效率。为了获得成功的润湿行为,必须了解三个因素:基底的表面化学性质(和表面能),氟化氢溶液和基底之间的化学相互作用,以及氟化氢溶液的有效蒸发。这衬底的表面化学性质受到先前应用的等离子体灰化的影响。这些灰可以通过去除疏水基团而降低基材对湿法蚀刻工艺的抵抗力,因此,使得亲水表面更容易受到HF的侵蚀。氟化氢溶液的蒸发也会影响基材的润湿行为。延长润湿时间会导致氟化氢溶液蒸发。随着液体体积的损失,接触角会受到影响。为了量化这种行为,从表面化学、粗糙度和轮廓方面测量和检查在固液界面形成的接触角。 实验样品采用化学蒸气沉积的SiOCH低k薄膜(2700A沉积在硅片上),孔隙率约为25-30%,孔径约为2nm,k值为2.3。薄膜在以下条件下进行等离子体清洗处理:N2/H2 (30 s、900sccm、2000W、2Torr、260C)、N2/H2(60s、900sccm、2000W、2Torr、260C)和O2(20s、25C)。这些薄膜被单独安装在湿度控制环境下的接触角测角计上。通过在...
发布时间: 2021 - 11 - 06
浏览次数:6
扫码添加微信,获取更多半导体相关资料引言近年来,小尺寸、轻重量、低生产成本和可再现的可制造性的器件变得非常重要。通过湿法蚀刻单晶硅或玻璃的微机械加工可以符合这些严格的要求。硅或玻璃的湿法蚀刻是体微机械加工的关键技术,用于生产微器件,如压力传感器的隔膜、光纤对准的V形槽和生物芯片的微通道。随着微机电系统市场的增长,基于湿法刻蚀的体微操作的精确控制越来越受到关注。特别是,蚀刻表面的粗糙度变化可能是微机电系统器件商业化中最主要的因素之一。此外,为了通过使用粘合技术组装微机械零件来制造微器件,需要光滑且无缺陷的表面。为了改善湿法刻蚀的特性,制作了兆频超声波搅拌组件。在本方法中,在有和没有兆频超声波搅动的湿法蚀刻过程中,研究了MAM的特性。MAM的使用改善了湿法蚀刻的特性,例如蚀刻速率、蚀刻均匀性和表面粗糙度。特别地,在硅和玻璃两种情况下,整个晶片上的蚀刻均匀性都小于1%。通常,单晶硅的初始均方根粗糙度(Rrms)小于0.5 nm。一些研究者通过磁力搅拌和超声波搅拌分别获得了566和66 nm的粗糙度。在这项研究中,蚀刻硅表面的粗糙度小于60纳米。用兆频超声波搅拌湿法蚀刻硅可以在蚀刻过程中保持几乎原始的表面粗糙度。结果表明,大气搅拌是提高蚀刻率、蚀刻均匀性和表面粗糙度的有效途径,所开发的微加工系统适用于制造复杂结构的器件。 实验样品的起始材料为6英寸。(100)的硅晶片和一个6英寸...
发布时间: 2021 - 11 - 06
浏览次数:3
扫码添加微信,获取更多半导体相关资料引言在氨过氧化氢混合物(APM)(或SC1)清洗处理之前,硅晶片暴露于包含HF蚀刻步骤的清洗序列。这些晶片根据至少三种机制进行粗糙化。一种粗糙化机制是由于来自APM混合物的蒸汽,而另外两种与金属污染密切相关。首先,来自热APM溶液的氨蒸汽将凝结在冷的疏水晶片表面上,并将蚀刻该表面。第二,铁离子污染(以氢氧化铁聚集体的形式存在于APM中)会催化过氧化氢的分解。在晶片浸入过程中,这些铁离子聚集体会沉积在硅表面。因此,随着这些聚集体继续催化其分解,产生了局部过氧化氢损耗。这导致深度为2-5纳米的典型环中的硅的局部蚀刻,而3-8纳米的氧化硅边缘被沉积在环旁边。最后,诸如铜和镍的金属可以在APM步骤之前的HF步骤中镀在硅晶片上。它们在原电池中充当阴极,而铜(或镍)核周围的硅正在阳极溶解。 实验用于实验的化学物质具有低金属污染的过氧化氢(30%)和氨(25%)。将标准铁(NO3)3 (1000重量ppm)溶液稀释至1或10重量ppm储备溶液。使用这些储备溶液时,APM被添加到0.1-10重量ppb的水平。用沸腾的稀硝酸(5%)清洗石英容器和晶片容器1小时,然后用去离子水冲洗。监控硅片(n型或p型,[100]取向,150 mm直径)在喷雾处理器中清洗[硫酸过氧化氢混合物(SPM)-稀HF-APM-盐酸过氧化氢混合物(HPM)序列],并在SPM浴中浸泡...
发布时间: 2021 - 11 - 06
浏览次数:4
扫码添加微信,获取更多半导体相关资料引言在半导体衬底(晶圆)清洗中,湿法清洗必不可少。湿法清洗可以包括化学和机械方法,用于湿法蚀刻薄膜层和/或去除晶片表面上的颗粒。在现有技术中,湿法清洁的一种方式包括使用声能清洁装置。一种声能清洁装置利用一种工艺,其中晶片被放置在液体浴中,并且高频辐射或空化被施加到浴中的液体。同时,液体中的化学物质为晶片上的层提供了表面蚀刻。表面蚀刻和空化共同提供清洁晶片表面的机械和化学作用。 介绍用于湿晶片清洗的速率监视器。速率监视器连接到单晶片清洗设备,以测量和控制湿法清洗过程。在晶片清洗过程中,当晶片被液体覆盖时,速率监测器可以监测晶片一部分的变化速率,并及时预测湿法清洗过程的终点。终点的知识可用于优化和控制清洁过程的各个方面。简而言之,在单晶片清洗过程中,速率监视器被用来监视晶片的一部分发生变化的速率,例如覆盖晶片的薄膜。基于变化发生的速率,速率监视器可以及时预测终点参考。终点可以对应于湿式清洁过程的一个阶段将结束而另一个阶段将开始的时间点。一旦预测了终点,就可以在实际终点发生之前控制湿法清洗过程,使得通常会在终点发生之后执行的事件现在可以在预测终点之前执行。换句话说,速率监视器可以确定湿法清洗过程的结束有多快,确定在到达终点之前需要做什么,以及做什么那些需要做的事情。因此,清洁过程的下一阶段可以在没有不必要的切换延迟的情况下进行,从而加速了清洁...
发布时间: 2021 - 11 - 05
浏览次数:5
扫码添加微信,获取更多半导体相关资料引言碳化硅(SiC)器件制造技术与硅制造有许多相似之处,但识别材料差异是否会影响清洗能力对于这个不断发展的领域很有意义。材料参数差异包括扩散系数、表面能和化学键强度,所有这些都可以在清洁关键表面方面发挥作用。这项工作将100毫米或150毫米4H碳化硅晶片经过汞探针电容电压(MCV)绘图后的痕量表面污染水平与后续清洗后的水平进行了比较。在MCV期间,痕量金属如汞、铁和镍被可控地添加,并且显示出多种清洁方法可以将碳化硅表面恢复到低于5x1010原子/cm2的清洁度水平。讨论了这些清洗在集成器件工艺流程中的位置以及成本比较。 介绍碳化硅功率器件提高了开关效率,非常适合高温和中高压应用。因此,它们有望在未来十年刺激大于1000伏的应用增长,因为它们能够显著减少排放。SUNY理工学院的电力电子制造联盟将利用这一增长,因为它使用150毫米碳化硅晶片为1200伏功率金属氧化物半导体场效应晶体管(MOSFETs)提供了适度的体积。这个斜坡提供了一个机会来描述阻碍碳化硅金属氧化物半导体场效应晶体管批量生产的发展问题,包括成本、产量、产量和可靠性的风险。如果这些参数中的任何一个受到材料差异(硅和碳化硅之间)的影响,那么就需要识别这些问题,并建立一个路线图来改进批量生产。虽然单晶碳化硅中的材料扩散比类似温度下的硅慢得多,但碳化硅热处理通常在高得多的温度下进行...
发布时间: 2021 - 11 - 05
浏览次数:5
扫码添加微信,获取更多半导体相关资料引言为了获得功能正常的半导体器件,我们在纳米制造过程中依赖于严格的尺寸控制。在该初步校准之后,在相同的处理条件下在真实晶片上运行制造,随后再次进行后处理测量检查。这种迭代方法有明显的缺点,包括重复运行的额外时间和成本、由于系统漂移引起的变化以及缺乏自适应过程控制。此外,表征测量通常需要破坏样品。很明显,精确的、非破坏性的、实时的原位监测是非常理想的,因为它能够反馈和微调加工条件。光学表征方法满足了无损检测的需要。因此,点测量技术,如光谱椭偏测量法、相敏椭偏测量法、激光反射测量法、多光束干涉测量法、发射光谱测量法已经成功实施。典型地,结构高度是在单个感兴趣的点或区域测量的,并且假设工艺是均匀的,则推断出晶片上的信息。这对于大多数平面工艺来说是足够的。定量相位成像的相位图像提供了关于被研究样本的结构和动力学的纳米级信息。特别是,衍射相位显微术(DPM)是一种稳定的定量相位成像方法,已经成功地用于研究细胞膜的纳米级波动。 实验我们提出了一种新的光学方法,利用DPM的概念来执行纳米尺度动力学的实时定量地形测量。我们的方法被称为外延衍射相位显微术(epi-DPM),在反射中操作以适应不透明的样品,并以2.8 nm的空间(即点到点)和0.6 nm的时间(帧到帧)灵敏度呈现形貌信息。纳米级地形图像是从单个相机曝光获得的,因此获取速率仅受相机帧速率的限...
发布时间: 2021 - 11 - 05
浏览次数:4
扫码添加微信,获取更多半导体相关资料引言发光二极管(LED)已成为近30年现代节能照明技术的基础。通过各向异性蚀刻n面氮化镓的蚀增是当今生产蓝白发光二极管(led)的关键方面。表面积和表面角度的数量都增加了,有利于光从发光二极管芯片耦合输出。通过金属有机化学气相沉积(MOCVD)生长的氮化镓叠层结构在非连续掺杂的铀-氮化镓体区发生了变化。2D和三维生长层的不同顺序导致位错密度的变化,这通过光致发光显微镜和x光衍射来监测。应用了包括激光剥离(LLO)在内的薄膜处理,在升高的温度下,在氢氧化钾水溶液中测定外延变化对N面蚀刻动力学的影响。电感耦合等离子体发射光谱(ICP-OES)被用于以小时间增量高精度测量蚀刻过程。由此,克服了诸如确定体重减轻或身高差异的其他技术的缺点,实现了高精度和可再现性。 实验氮化镓层的制备:标准的c面取向氮化镓外延层生长在衬底上。如图1所示,用不同的叠层制备外延叠层A-E。a在下面的讨论中作为参考样本。通常在最靠近基底的层中进行三维生长。我们选择2D生长来达到高的初始位错密度并获得最大的位错密度变化。改变三维生长条件是为了减少由位错向横向弯曲引起的缺陷。众所周知,3D生长可以通过各种生长方法来启动。样品C由3000纳米厚的单2D氮化镓层组成。d的特点是一个修正的2D-三维转变,导致更多的位错穿透2D-三维界面。在E中,制备了两个随后的2D-3D转变的阿...
发布时间: 2021 - 11 - 05
浏览次数:3
扫码添加微信,获取更多半导体相关资料引言通过TXRF直接测量晶片表面的微量元素是快速和非破坏性的。SR-TXRF具有与TXRF相似的特征,但主要由于高通量,检测限要好得多。VPD-TXRF和VPD-SR-TXRF在不同程度上提高了探测能力。但是,某些元素(如铜)在某些浓度下可能会有回收问题。VPD电感耦合等离子体质谱由于溶解了天然氧化物,是一种破坏性技术,但它可以分析元素周期表中的大多数元素,尤其是低Z元素。通过使用NIST标准进行校准,可以相对容易地验证定量。所有这些技术可以相互补充,并为半导体行业提供全面的分析。 介绍超净硅晶片表面是超大规模集成电路制造的最关键因素之一,因为晶片加工过程中不受控制的污染会改变电特性,导致产量损失1。晶片表面上一定浓度的金属杂质会导致严重的器件退化,例如载流子寿命缩短、栅极氧化物的电介质击穿、阈值电压偏移和pn结的漏电流。使用同步辐射作为主要激发源可以提高TXRF的整体灵敏度。与通过电子轰击金属靶产生的常规x射线源相比,同步辐射是作为储存环中循环或振荡电子的自然副产品产生的。它包含电磁光谱的所有波长,比标准仪器的x射线发生器强大100倍或更多。同步辐射的主激发源与传统x射线管相比有几个优点:高附带通量与低发散度相结合导致更高的荧光强度,因此检测限更低。由于它的线偏振,入射光束的弹性散射可以减少。已经被全反射降低的光谱背景被进一步降低。同...
发布时间: 2021 - 11 - 05
浏览次数:3
扫码添加微信,获取更多半导体相关资料引言本文首次提出了由标准SC1/SC2腐蚀周期引起的Si (100)表面改性的证据。SC1/SC2蚀刻(也称为RCA清洗)通过NH3:H2O2:H2O混合物使硅片氧化,在稀释的HF中去除氧化物,通过HCl:H2O2:H2O混合物进一步氧化,并在稀释的HF中进行最终蚀刻。使用高分辨率透射电子显微镜(HRTEM)-平行电子能量损失光谱(皮勒斯)和低能电子衍射(LEED)技术分析样品。HRTEM-皮尔斯分析采用了特殊的横截面几何形状,增强了HRTEM对表面物种的敏感性。原子分辨率的HRTEM显微照片显示,只有当样品经历了SC1/SC2循环时,硅表面的纳米层中的结晶顺序才部分丧失。HRTEM和LEED都没有观察到(2 ×1)重建图案。皮耳分析可以排除表面或无序层中氧、碳或氟的存在,从而得出氧化处理导致硅(100)表面晶体结构改变的结论。 实验在整个工作中,使用了直拉法生长的0.6毫米厚的p型1.7–2.5 Mcm(100)硅片。晶片在热三氯乙烯(353 K下600秒)、丙酮(313 K下600秒)和水中进行标准脱脂处理,以去除任何有机残留物。为了生成氢封端的硅(100)表面,我们将样品浸入353 K的APM溶液(NH3 (32%体积)-H2O 2(30%体积)-H2O(1:1:5体积))中600秒,以去除有机污染物并氧化表面。然后在缓...
发布时间: 2021 - 11 - 04
浏览次数:3
1085页次14/109首页上一页...  9101112131415161718...下一页尾页
Copyright ©2005 - 2013 南通华林科纳半导体设备有限公司
犀牛云提供企业云服务
南通华林科纳半导体设备有限公司
地址:中国江苏南通如皋城南街道新桃路90号
电话: 400-876- 8096
传真:0513-87733829
邮编:330520
Email:xzl1019@aliyun.com       www.hlkncse.com


X
3

SKYPE 设置

4

阿里旺旺设置

2

MSN设置

5

电话号码管理

  • 400-8798-096
6

二维码管理

8

邮箱管理

展开